Show simple item record

dc.contributor.authorKruis, Aleksander J.
dc.contributor.authorBohnenkamp, Anna C.
dc.contributor.authorNap, Bram
dc.contributor.authorNielsen, Jochem
dc.contributor.authorMars, Astrid E.
dc.contributor.authorWijffels, Rene Hubertus
dc.contributor.authorvan der Oost, John
dc.contributor.authorKengen, Servé W. M.
dc.contributor.authorWeusthuis, Ruud A.
dc.date.accessioned2021-02-24T13:24:23Z
dc.date.available2021-02-24T13:24:23Z
dc.date.created2021-02-15T14:03:10Z
dc.date.issued2020
dc.identifier.citationKruis, A. J., Bohnenkamp, A. C., Nap, B., Nielsen, J., Mars, A. E., Wijffels, R. H., van der Oost, J., Kengen, S. W. M. & Weusthuis, R. A. (2020). From Eat to trEat: engineering the mitochondrial Eat1 enzyme for enhanced ethyl acetate production in Escherichia coli. Biotechnology for Biofuels, 13: 76. doi:en_US
dc.identifier.issn1754-6834
dc.identifier.urihttps://hdl.handle.net/11250/2730150
dc.description.abstractGenetic engineering of microorganisms has become a common practice to establish microbial cell factories for a wide range of compounds. Ethyl acetate is an industrial solvent that is used in several applications, mainly as a biodegradable organic solvent with low toxicity. While ethyl acetate is produced by several natural yeast species, the main mechanism of production has remained elusive until the discovery of Eat1 in Wickerhamomyces anomalus. Unlike other yeast alcohol acetyl transferases (AATs), Eat1 is located in the yeast mitochondria, suggesting that the coding sequence contains a mitochondrial pre-sequence. For expression in prokaryotic hosts such as E. coli, expression of heterologous proteins with eukaryotic signal sequences may not be optimal. Results Unprocessed and synthetically truncated eat1 variants of Kluyveromyces marxianus and Wickerhamomyces anomalus have been compared in vitro regarding enzyme activity and stability. While the specific activity remained unaffected, half-life improved for several truncated variants. The same variants showed better performance regarding ethyl acetate production when expressed in E. coli. Conclusion By analysing and predicting the N-terminal pre-sequences of different Eat1 proteins and systematically trimming them, the stability of the enzymes in vitro could be improved, leading to an overall improvement of in vivo ethyl acetate production in E. coli. Truncated variants of eat1 could therefore benefit future engineering approaches towards efficient ethyl acetate production.en_US
dc.language.isoengen_US
dc.publisherBioMed Centralen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleFrom Eat to trEat : engineering the mitochondrial Eat1 enzyme for enhanced ethyl acetate production in Escherichia colien_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holder© 2020 The Author(s)en_US
dc.subject.nsiVDP::Teknologi: 500::Bioteknologi: 590en_US
dc.subject.nsiVDP::Matematikk og Naturvitenskap: 400::Basale biofag: 470::Biokjemi: 476en_US
dc.subject.nsiVDP::Matematikk og Naturvitenskap: 400::Basale biofag: 470::Molekylærbiologi: 473en_US
dc.subject.nsiVDP::Matematikk og Naturvitenskap: 400::Basale biofag: 470::Generell mikrobiologi: 472en_US
dc.source.pagenumber10en_US
dc.source.volume13en_US
dc.source.journalBiotechnology for Biofuelsen_US
dc.identifier.doi10.1186/s13068-020-01711-1
dc.identifier.cristin1889950
dc.source.articlenumber76en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Navngivelse 4.0 Internasjonal
Except where otherwise noted, this item's license is described as Navngivelse 4.0 Internasjonal