Vis enkel innførsel

dc.contributor.authorRuiz, Catalina A. Suarez
dc.contributor.authorKwaijtaal, Jennifer
dc.contributor.authorPeinado, Oriol Cabau
dc.contributor.authorvan den Berg, Corjan
dc.contributor.authorWijffels, Rene Hubertus
dc.contributor.authorEppink, Michel H.M.
dc.date.accessioned2021-03-01T09:32:54Z
dc.date.available2021-03-01T09:32:54Z
dc.date.created2021-02-18T14:23:22Z
dc.date.issued2020
dc.identifier.citationRuiz, C. A. S., Kwaijtaal, J., Peinado, O. C., van den Berg, C., Wijffels, R. H. & Eppink, M. H. M. (2020). Multistep fractionation of microalgal biomolecules using selective aqueous two-phase systems. ACS Sustainable Chemistry and Engineering, 8(6), 2441-2452. doi:en_US
dc.identifier.issn2168-0485
dc.identifier.urihttps://hdl.handle.net/11250/2730843
dc.description.abstractWe aim to develop liquid–liquid extraction processes for the fractionation of microalgal components (proteins, pigments, lipids, and carbohydrates). The partitioning behavior of microalgal pigments and proteins in aqueous two-phase systems (ATPS) composed of the polymer polypropylene glycol with molecular weight 400 (PPG 400) + various cholinium based-ionic liquids was studied. A process for fractionation of multiple components from disrupted Neochloris oleoabundans was developed and evaluated. Results show that cholinium dihydrogen phosphate (Ch DHp) allows the fractionation of pigments in the PPG 400-rich phase and proteins in the Ch DHp-rich phase with high selectivity. It was demonstrated that a multiproduct approach can fractionate free glucose, and proteins in the ionic liquid-rich phase, pigments in the polymer-rich phase, while starch and lipids are recovered at the interface.en_US
dc.language.isoengen_US
dc.publisherAmerican Chemical Societyen_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.titleMultistep fractionation of microalgal biomolecules using selective aqueous two-phase systemsen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holder© 2020 American Chemical Societyen_US
dc.subject.nsiVDP::Matematikk og Naturvitenskap: 400::Basale biofag: 470::Molekylærbiologi: 473en_US
dc.subject.nsiVDP::Matematikk og Naturvitenskap: 400::Basale biofag: 470::Biokjemi: 476en_US
dc.subject.nsiVDP::Teknologi: 500::Bioteknologi: 590en_US
dc.source.pagenumber2441-2452en_US
dc.source.volume8en_US
dc.source.journalACS Sustainable Chemistry and Engineeringen_US
dc.source.issue6en_US
dc.identifier.doi10.1021/acssuschemeng.9b06379
dc.identifier.cristin1891407
dc.description.localcodePaid Open Accessen_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal