Show simple item record

dc.contributor.authorMaurelli, Mario
dc.contributor.authorModin, Klas
dc.contributor.authorSchmeding, Alexander
dc.date.accessioned2023-03-23T07:45:59Z
dc.date.available2023-03-23T07:45:59Z
dc.date.created2023-01-23T09:36:27Z
dc.date.issued2023
dc.identifier.citationMaurelli, M., Modin, K., & Schmeding, A. (2023). Incompressible Euler equations with stochastic forcing: A geometric approach. Stochastic Processes and their Applications, 159, 101-148. doi:en_US
dc.identifier.issn1879-209X
dc.identifier.urihttps://hdl.handle.net/11250/3060000
dc.descriptionAuthor's accepted version (postprint).en_US
dc.descriptionThis is an Accepted Manuscript of an article published by Elsevier in Stochastic Processes and their Applications on 20/1/2023.en_US
dc.descriptionAvailable online: doi.org/10.1016/j.spa.2023.01.011en_US
dc.description.abstractWe consider a stochastic version of Euler equations using the infinite-dimensional geometric approach as pioneered by Ebin and Marsden (1970). For the Euler equations on a compact manifold (possibly with smooth boundary) we establish local existence and uniqueness of a strong solution in spaces of Sobolev mappings (of high enough regularity). Our approach combines techniques from stochastic analysis and infinite-dimensional geometry and provides a novel toolbox to establish local well-posedness of stochastic non-linear partial differential equations.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.titleIncompressible Euler equations with stochastic forcing : A geometric approachen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionacceptedVersionen_US
dc.subject.nsiVDP::Matematikk: 410en_US
dc.subject.nsiVDP::Mathematics: 410en_US
dc.source.pagenumber101-148en_US
dc.source.volume159en_US
dc.source.journalStochastic Processes and their Applicationsen_US
dc.identifier.doi10.1016/j.spa.2023.01.011
dc.identifier.cristin2112950
dc.relation.projectEC/H2020/691070en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal