dc.contributor.author | Maurelli, Mario | |
dc.contributor.author | Modin, Klas | |
dc.contributor.author | Schmeding, Alexander | |
dc.date.accessioned | 2023-03-23T07:45:59Z | |
dc.date.available | 2023-03-23T07:45:59Z | |
dc.date.created | 2023-01-23T09:36:27Z | |
dc.date.issued | 2023 | |
dc.identifier.citation | Maurelli, M., Modin, K., & Schmeding, A. (2023). Incompressible Euler equations with stochastic forcing: A geometric approach. Stochastic Processes and their Applications, 159, 101-148. doi: | en_US |
dc.identifier.issn | 1879-209X | |
dc.identifier.uri | https://hdl.handle.net/11250/3060000 | |
dc.description | Author's accepted version (postprint). | en_US |
dc.description | This is an Accepted Manuscript of an article published by Elsevier in Stochastic Processes and their Applications on 20/1/2023. | en_US |
dc.description | Available online: doi.org/10.1016/j.spa.2023.01.011 | en_US |
dc.description.abstract | We consider a stochastic version of Euler equations using the infinite-dimensional geometric approach as pioneered by Ebin and Marsden (1970). For the Euler equations on a compact manifold (possibly with smooth boundary) we establish local existence and uniqueness of a strong solution in spaces of Sobolev mappings (of high enough regularity). Our approach combines techniques from stochastic analysis and infinite-dimensional geometry and provides a novel toolbox to establish local well-posedness of stochastic non-linear partial differential equations. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Elsevier | en_US |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/deed.no | * |
dc.title | Incompressible Euler equations with stochastic forcing : A geometric approach | en_US |
dc.type | Peer reviewed | en_US |
dc.type | Journal article | en_US |
dc.description.version | acceptedVersion | en_US |
dc.subject.nsi | VDP::Matematikk: 410 | en_US |
dc.subject.nsi | VDP::Mathematics: 410 | en_US |
dc.source.pagenumber | 101-148 | en_US |
dc.source.volume | 159 | en_US |
dc.source.journal | Stochastic Processes and their Applications | en_US |
dc.identifier.doi | 10.1016/j.spa.2023.01.011 | |
dc.identifier.cristin | 2112950 | |
dc.relation.project | EC/H2020/691070 | en_US |